HPLC Application

ID No.: 24530

Linearity curve of Cocaine from Oral fluid on a Strata-X-C and Knx 2.6um, XB-C!8 50x4.6 column

Kinetex® 2.6 µm XB-C18 100 Å, LC Column 50 x 4.6 mm, Ea

Dimensions: 50 x 4.6 mm ID Order No: 00B-4496-E0 **Elution Type:** Gradient

Eluent A: 0.1% Formic Acid in DI H2O Eluent B: 0.1% Formic Acid in ACN

Gradient	Step No.	Time (min)	Pct A	Pct B
Profile:	1	0	90	10
	2	3	60	40
	3	3.5	60	40
	4	3.51	90	10
	5	6	90	10

Flow Rate: 1000 Col. Temp.: ambient

Electrospray Mass Spec (ESMS) @ 0.000000000 (ambient) **Detection:**

Sample pre-treatment **Analyst Note:**

1ml human oral fluid was collected on cellulose pad of the

applicator tip provided by the Intercept® i2 oral fluid device (OFC) . Saturated pad was placed into

transport tube containing buffer solution and allowed to sit overnight. Centrifuge at 600g for 15mins to collect

supernatant.

SPE cartridge: Strata-X-C, 30 mg 96-Well Plate

8E-S029-TGB Part No. Step Procedure Condition: 1 mL Methanol Equilibrate: 1 mL DI Water

Load: Combine 0.5mL of pretreated sample spiked with internal standards and 1 mL 1% formic acid, mix/vortex 10-15 secs and 1 mL DI Water Weak Wash:

Strong Wash:

1 mL 50:50 Acetone/Water

5 minutes at maximum vacuum (15" Hg or higher) Dry Down: $2 \times 500 \ \mu L$ Methanol/Acetonitrile/30% Ammonium Hydroxide Elute:

(5:5:2) Evaporate to dryness under gentle nitrogen and 45-50°C. Dry Down:

200 µL initial mobile phase Reconstitute:

Products used in this application:

HPLC Application ID No.: **24530**

Linearity curve of Cocaine from Oral fluid on a Strata-X-C and Knx 2.6um, XB-C!8 50x4.6 column

ANALYTES:

1 Cocaine

Retention Time: 2.31 min